(논문)A guide to convolution arithmetic for deep learning
Chapter1 Introduction 최근 이미지넷 이미지 분류 챌린지에서 최신 기술을 능가하는 데 깊은 합성곱 신경항(Deep CNN)이 사용됨 CNN의 출력은 입력 데이터의 형태, 커널의 형태, 제로패딩, 스트라이드에 의해 영향을 받음. 한편 이런 속성들 사이의 관계는 단순하게 추론하기 어려움. -입력 데이터의 형태: 입력이미지의 크기, 채널 수 -커널의 형태: 커널의 크기, 채널 수 CNN은 fully-connected layers(완전연결층)와는 다름. fully-connected layers의 출력 크기는 입력 크기와는 독립적임. -CNN vs fully-connected layers 1. 완전연결층의 출력 크기는 입력 크기와 독립적으로, 항상 일정한 크기의 출력을 생성함. 2. CNN는 합성..
2023.08.07